Adaptive Optimal -Stage Runge-Kutta Methods for Solving Reaction-Diffusion-Chemotaxis Systems

نویسنده

  • Jui-Ling Yu
چکیده

We present a class of numerical methods for the reaction-diffusion-chemotaxis system which is significant for biological and chemistry pattern formation problems. To solve reactiondiffusion-chemotaxis systems, efficient and reliable numerical algorithms are essential for pattern generations. Along with the implementation of the method of lines, implicit or semi-implicit schemes are typical time stepping solvers to reduce the effect on time step constrains due to the stability condition. However, these two schemes are usually difficult to employ. In this paper, we propose an adaptive optimal time stepping strategy for the explicit m-stage Runge-Kutta method to solve reaction-diffusion-chemotaxis systems. Instead of relying on empirical approaches to control the time step size, variable time step sizes are given explicitly. Yet, theorems about stability and convergence of the algorithm are provided in analyzing robustness and efficiency. Numerical experiment results on a testing problem and a real application problem are shown.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CALTECH ASCI TECHNICAL REPORT 169 A nonstiff additive semi-implicit Runge-Kutta scheme for finite-rate reacting flows

A nonstiff additive semi-implicit third-order Runge-Kutta scheme suitable for integration of convection-diffusion-reaction equations with few diffusion dominated species is presented in this article. This scheme permits larger time steps than those required by explicit schemes and uses only one implicit stage and two explicit stages. The stability domain is analyzed and tests are carried out fo...

متن کامل

Theory and Implementation of Numerical Methods Based on Runge-Kutta Integration for Solving Optimal Control Problems

THEORY AND IMPLEMENTATION OF NUMERICAL METHODS BASED ON RUNGE-KUTTA INTEGRATION FOR SOLVING OPTIMAL CONTROL PROBLEMS

متن کامل

Application of approximate matrix factorization to high order linearly implicit Runge-Kutta methods

Linearly implicit Runge-Kutta methods with approximate matrix factorization can solve efficiently large systems of differential equations that have a stiff linear part, e.g. reaction-diffusion systems. However, the use of approximate factorization usually leads to loss of accuracy, which makes it attractive only for low order time integration schemes. This paper discusses the application of app...

متن کامل

Third order implicit-explicit Runge-Kutta local discontinuous Galerkin methods with suitable boundary treatment for convection-diffusion problems with Dirichlet boundary conditions

To avoid the order reduction when third order implicit-explicit Runge-Kutta time discretization is used together with the local discontinuous Galerkin (LDG) spatial discretization, for solving convection-diffusion problems with time-dependent Dirichlet boundary conditions, we propose a strategy of boundary treatment at each intermediate stage in this paper. The proposed strategy can achieve opt...

متن کامل

Analysis Of Reaction Diffusion Problems Using Differential Quadrature Method

In this paper, a hybrid technique of differential quadrature method and Runge-Kutta fourth order method is employed to analyze reaction-diffusion problems. The obtained results are compared with the available analytical ones. Further, a parametric study is introduced to investigate the influence of reaction and diffusion characteristics on behavior of the obtained results. Index Term-Reaction-d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011